DIGITIZATION AND HOPEFULLY DIGITALIZATION OF THE SWEDISH NATIONAL TESTS IN MATHEMATICS

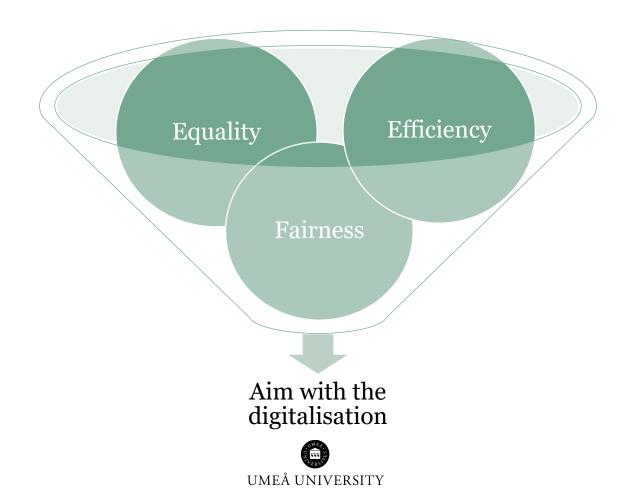
A status update and thoughts for the future

Anna Lind Pantzare

OUTLINE

- Short introduction to the Swedish school system and national tests.
- Background on the digitalization.
- Thoughts about future digital tests in mathematics.
- Digital tools and testing.
- Comparison paper based and computer based testing.

SWEDISH SCHOOL SYSTEM AND NATIONAL TESTS


- Curriculum goals focusing compentencies
- Criterion-referenced grading
- Grading criteria with focus on the process
- Teachers are assessing and grading their own students.
 - o The grades are used for selection.
- National tests in Swedish, English and mathematics to support fair and equal grading.

DIGITALIZATION OF THE NATIONAL TESTS

- It has taken some time...
- Decision taken 2017.
- Initially math was planned to 2023, now autumn 2025.
- Covid 19, Schrems II and GDPR have delayed the work.
- Development of a functional digital assessment platform.
 - A platform that will only be used for national tests.
- Still, the schools are not ready technically to handle the digital tests.

EQUALITY, EFFICIENCY AND FAIRNESS

- No papers to distribute
- Automatic scoring
 - o Increase items that can be automatically scored.
- Training and monitoring of raters
- Digital tools
- Possibilities to make adaptations for students with disabilities.

NATIONAL TESTS IN MATHEMATICS COURSE 2-4 TODAY

- Paperbased, 2h+2h
- Part B short answer, without calculator.
 Part C complete solutions, without calculator.
- Part D1- short answer, graphical tools required.
- Part D2 complete solutions, calculators allowed, graphical tools required for Ma2-4.
- Example of a national test in course 3

CHARACTERISTICS TODAY

- Few multiple-choice, mainly short answer items
 - Problematic to automatically score digitally
- Include all competencies
 - Appriciated and quite exemplary
- Advanced digital tools are problematic
 - All kinds of tools are allowed, only graphical tools are required.
 - A major shift from hand held graphical tools to GeoGebra.

FORTHCOMING DIGITAL TESTS

- Reliability is prioritized
 - Automatic scoring as much as possible
 - De-identification when scoring esseys and complete solutions.
- Technical issues
 - Short answers cannot include mathematical notation.
 - Complete solutions will remain on paper.
- Possibility to choose digital tools
 - o Include a part with only a scientific calculator available.

FORTHCOMING DIGITAL TESTS CONT.

- How tasks and scoring guides can be designed is to some extent limited by the technology and demands of accessibility
 - Types of items possible to include
 - How the scoring guides can be arranged
 - o For mathematics (and physics), complete solutions on paper
 - Functionality of the digital tools
 - Security during field trials
 - Possibility to give feedback from field trials.
- Introduces threats to validity, both CIV and CUR

WHAT IS THE PLAN FOR THE DIGITAL TESTS IN MATH?

DISCUSSED TEST MODELS

	As the paper based tests	"The three parts testlet model" Version A	"The three parts testlet model" Version B
Part 1	Short answers and complete solutions. No calculator	Short answers. No calculator	Short answers and complete solutions. No calculator.
Part 2	Short answers and complete solutions. All calculators allowed.	Short answers. Graphical calculators needed.	Short answers and complete solutions. Graphical calculators needed.
Part 3		Complete solutions. Scientific calculator.	Complete solutions. Scientific calculator.

DIGITAL TOOLS IN THE ASSESSMENT PLATFORM

- Separate parts of GeoGebra classic
 - The scientific calculator
 - The graphing calculator
 - The probability calculator
 - The CAS calculator
 - The geometry calculator (is not planned to be used)
 - The 3D-calculator (is not planned to be used)
 - but not the spread sheet
- However, some functionality restrictions in these tools.

DIGITAL TOOLS IN THE ASSESSMENT PLATFORM

- An old version of GeoGebra Suite
 - Several functions are hidden in the graphical calculator.
 - The spread sheet is hidden.
 - However, this tool is embedded in the test item and the student work is saved and can be scored.
- It is also possible to embed a prepared GeoGebra asset which can work as an interactive simulation.
- Finally, an Excel-type component exsists.

DIGITAL TOOLS IN THE ASSESSMENT PLATFORM

• The question is how many different tools can be included in an assessment situation?

WHY SOLUTIONS ON PAPER?

- All students in upper secondary school takes a national test in mathematics.
- An equation editor that students are not used to.
- No possibility to draw figures or change given pictures
 - And graphs in parts without digital tools.

A SNEAK PEAK INTO THE FUTURE

• Some examples of possible items in the assessment platform.

STUDY COMPARING PAPER BASED AND COMPUTER BASED TESTS

- Does the digital format introduce cognitive load?
- Investigate if there are any differences between a paper-based and a digital implementation of mathematics test items.
- Differences with respect to:
 - o difficulty
 - use of scratch paper
 - o amount of time needed

THE TESTS

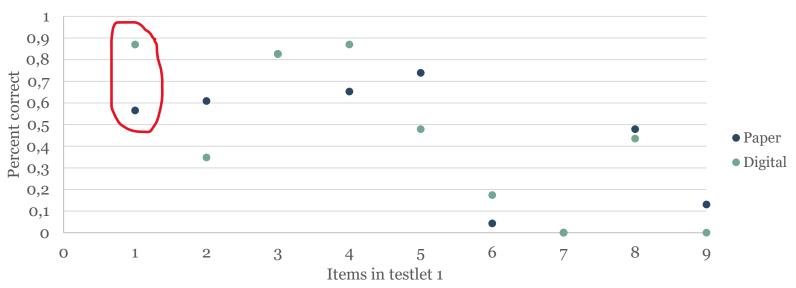
- Test items from the second course in upper secondary school mathematics.
- Two testlets with equal difficulty.
 - Nine items per testlet.
 - Mainly short answer and MC-questions but also two items demanding complete solutions.

THE PARTICIPANTS AND STUDY DESIGN

- Two study groups at the same school.
- Each student took one paper and pencil testlet and one digital testlet.

Group 1:

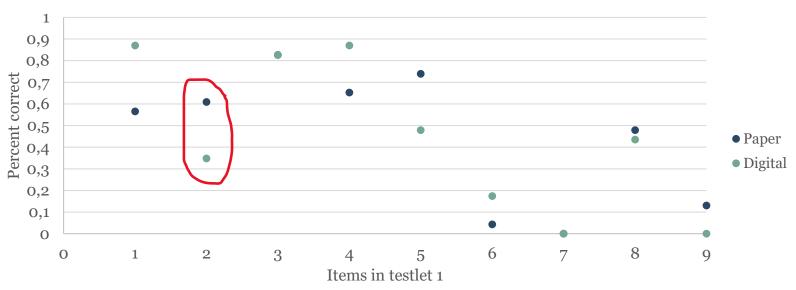
- o 23 students
- o Testlet 1 digitally and Testlet 2 paper and pencil.


Group 2:

- o 22 students
- Testlet 1 paper and pencil and Testlet 2 digitally.

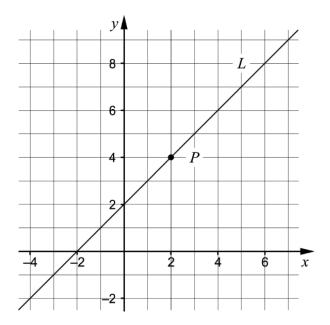
PROPORTION CORRECT, TESTLET 1

Comparison p-values, paper versus digital, testlet 1

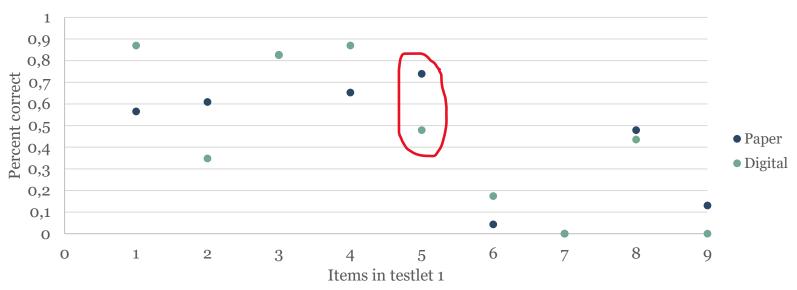

TESTLET 1 U1

Solve the equation $\sqrt{x+1} = 5$

PROPORTION CORRECT, TESTLET 1


Comparison p-values, paper versus digital, testlet 1

TESTLET 1, ITEM 2

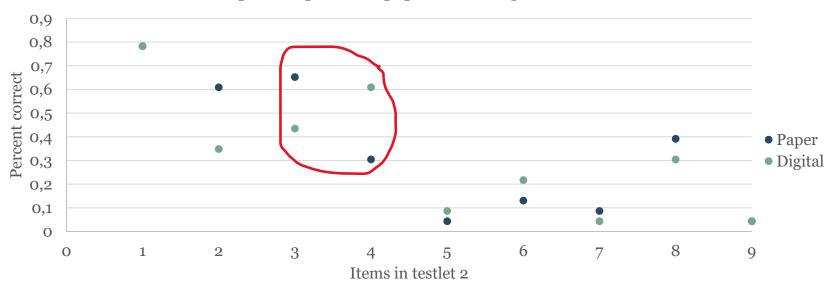

The coordinate system shows a straight line L and a point P on the line.

Write down the equation for another straight line which together with the line L forms a linear system with solution at point P.

PROPORTION CORRECT, TESTLET 1

Comparison p-values, paper versus digital, testlet 1

TESTLET 1, ITEM 5

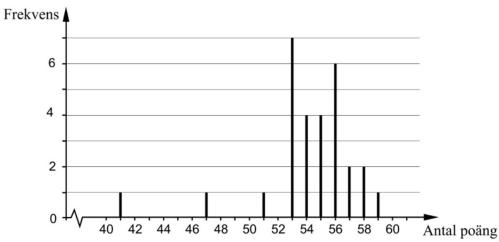

Simplify the expression as far as possible $\frac{(\sqrt{x} + \sqrt{3})^2 - (x+3)}{2}$

USE OF SCRATCH PAPER, TESTLET 1

	Paper	Digital
1	8	1
2	10	
3a		
3 b		
4	16	10
5	13	5
6	5	2
7	Full solution	8
8	Full solution	2

PROPORTION CORRECT, TESTLET 2

Comparison p-values, paper versus digital, testlet 2



USE OF SCRATCH PAPER, TESTLET 2

	Paper	Digital
1	5	2
2	1	
3	12	4
4	11	5
5	1	
6		
7		
8	Full solution	5
9	Full solution	4

TESTLET 2, ITEM 3 AND 4

The diagram shows the results from a test in mathematics for 29 students.

- 3. Determine the range.
- 4. Determine the median.

ITEMS WITH COMPLETE SOLUTIONS

Solve the equation $x^2 - 6x + 5 = 0$ algebraically.

ITEMS WITH SOLUTIONS CONT.

$$x^{2}-6x+5=0 x) - \frac{-6}{2}\sqrt{\square}(\frac{-6}{2})^{2}-5$$

$$x = 3\pm\sqrt{9-5} x = 3\pm\sqrt{4}$$

$$x = 3\pm2 x^{2}-6x-5=0$$

$$x = 3\pm2 x^{2}$$

ISSUES TO HANDLE

- The functionality of the digital tools.
- Automatic scoring of mathematical expressions.
- Accessibility for students with disabilities.
- Complete solutions on paper.
- The formula sheet.
- The use of scribbling/scratch paper.

QUESTIONS?

Thank you for listening

