Från Falköping kommer återigen lite visuell och matematisk magi när duon Svetlana Yushmanova och Anders Karlsson förbereder sig för sina pass på Matematikbiennalen i Göteborg. Under rubriken För dig som sett allt har de gjort ett antal fantastiska konstruktioner. Här är några av dem.
Kartesiskt och polärt koordinatsystem samtidigt
Genom att ställa in koordinatsystemet som polärt och samtidigt skapa ett eget kartesiskt koordinatsystem med hjälp av två Talföljds-kommandon kan man visa att punkter med ”snygga” koordinater i det ena koordinatsystemet generellt får ”fula” koordinater i det andra systemet. Se konstruktionen.
Skriv innan det är för sent
En variant på ”identifiera linjens ekvation” men där linjen sakta ritas upp framför ögonen på eleverna och de måste hinna skriva ned ekvationen innan linjen ritats klart. Se konstruktionen.
Uppgift 6162 Ma2c Origo sid 275
Medellängden i en klass med 25 elever är 143 cm och standardavvikelsen är 9 cm. Tre nya elever kommer in i klassen vilket märkligt nog varken ändrar medellängden eller standardavvikelsen. Hur långa är de tre nya i klassen?
Det visar sig att lösningen går att visualisera i 3D-vyn på ett snyggt sätt. Lek själv med konstruktionen och övertyga dig om varför det stämmer och fundera på antalet lösningar. Se konstruktionen.
Men det är också ett utmärkt verktyg för att skapa begreppsförståelse och tydligare se vad som händer i olika situationer, till exempel hur binomialfördelningen mer och mer liknar normalfördelningen när antalet upprepningar växer, och ta upp begreppet sannolikhetsfördelning mer generellt.
Normalfördelning
Vi tänker oss att vi fiskat upp fiskar med medellängden 35 cm och standardavvikelsen 4 cm. Sannolikheten att få en fisk längre än 40 cm kan då beräknas till drygt 10 %. Observera att vi med digitala verktyg inte är beroende av att jobba med intervall som är hela multiplar av standardavvikelsen.
Lägg märke till hur kurvan inte ändrar form, utan skalan gör det
Vilken typ av intervall vi tittar på avgörs med klammersymbolerna.
Öppet åt vänster, stängt, dubbla ytterinterval samt öppet till höger
Uppe till höger finns alternativ för att exportera grafen och dess funktion till ritområdet samt lägga på en normalfördelningskurva (vilket är mer relevant när vi jobbar med något annat än just normalfördelningen).
När vi har ensidigt öppna intervall som i det här exemplet så går det att ställa frågan åt andra hållet. Om du vill hitta den längd på fiskarna som bara 5 % av fiskarna är längre än, så matar du in 0.05 i den högra rutan. och hittar längden 41,6 cm.
I vårt nästa exempel tänker vi oss att vi är i en fabrik som ska producera motstånd med värdet 2200 Ω ± 5 %.
Mätning på motstånd
Efter mätning på motstånden finner man att medelvärdet är 2217 Ω med standardavvikelsen 85 Ω. Hur stor andel behöver säljas som motstånd med sämre toleransmärkning, t.ex. ±10 % eller ± 20 %? Totalt ca 47 % uppfyller inte kraven på 5 % tolerans.
Binomialfördelning
När vi upprepar något som har en fast sannolikhet så kommer resultaten att bli binomialfördelade. Exempel på detta är att singla slant, att chansa vilt på frågorna i en tipspromenad, att dra kulor eller kort med återläggning och att få grönt ljus vid ett trafikljus där intervallen är fixerade.
Här fyller vi i ett stryktips med 13 rader ”1 x 2” på måfå och beräknar sannolikheten att få 8 rätt eller mer till ca 3,5 %. Vi har lagt på normalfördelningskurvan och ser att binomialfördelningen i hög grad liknar normalfördelningen i det här fallet. Tabellen ger värdena för de individuella utfallen.
Att chansa på stryktips lönar sig sällan
Nu gör vi tvärtom. Vi singlar slant 15 gånger. Det borde vara 50 % sannolikhet att få 8 ”kronor” eller mer. Hur mycket behöver vi begränsa det intervallet för att sannolikheten skall sjunka till 20 %? Mata in 0.3 i högra rutan så får vi svaret 9 ”kronor” eller fler. Mata in 9 på nytt i vänstra rutan för att dubbelkolla. Sannolikheten är 30,4 %, men för 10 ”kronor” är sannolikheten bara 15,1 %. GeoGebra avrundar till det nedre värdet på antalet kronor.
Krona och klave
Hypergeometrisk fördelning
Bakom det här kryptiska namnet döljer sig den fördelningsfunktion som beskriver sannolikheterna för att dra några objekt med en viss egenskap ur en större mängd objekt. Med andra ord: Dra kort ur kortlekar och kulor ur påsar utan återlägg.
Vi börjar med att dra upp 2 kulor (urval) ur en påse med 5 kulor (population) där 2 av dem är röda (n). Sannolikheten för att minst en av dem är röd är 70 %. Vi ser i tabellen att sannolikheten att båda är röda är 10 %. Samma resultat kan enkelt verifieras med ett träddiagram.
Dra kulor ur påse utan återlägg.
I vårt sista exempel spelar vi poker. Vi drar upp 5 kort av 52 och funderar på sannolikheten att få en färg (flush). Sannolikhetskalkylatorn ger sannolikheten att få exakt 5 kort av en viss färg till 0,05 %. Men vi är nöjda vilken färg det än blir så sannolikheten blir alltså ca 0,2 %. Sannolikheten att få minst 4 kort av samma färg är förstås högre, ca 4,5 % ( 4 gånger 0.0112).
Dra 5 kort ur en kortlek. Vad är sannolikheten att alla är hjärter?
Majsormen Enya. Hennes syster Moya är just nu inte i bild.
Jag har två ofarliga majsormar i mitt terrarium som livnär sig på möss (professionellt uppfödda, dödade och frysta och sedan upptinade vid matningstillfället).
Ormarna är ca ett år gamla och växer fortfarande. Sist jag köpte möss köpte jag ett 100-pack i viktspannet 8-18 g. Eftersom jag vill ge ormarna de minsta först och sedan öka storleken allt eftersom de växer så vägde jag alla mössen individuellt och packade om dem i olika påsar. Så här många möss hamnade i varje påse:
Vikt(gram)
Antal
8-10
17
10-12
27
12-14
34
14-16
19
16-18
3
Det här är ett exempel på klassindelat material. Det är å ena sidan ett destruktivt sätt att hantera mina data eftersom jag slänger bort information om vad varje individuell mus vägde, men å andra sidan så tjänar jag på att slippa dokumentera alla hundra mössens vikter.
Att göra statistik på klassindelat material är ett typexempel på saker som är bra att göra med dator. Det är omständigt, to say the least, att göra det för hand och kräver god organisation. Självklart ska man ha provat någon gång men framför allt behöver man kunna processen för hur man får datorn att göra jobbet åt en.
Det som nu följer baserar sig på GeoGebra Classic 6 men kunde lika gärna varit i Classic 5. Calculator Suite däremot har tabeller i stället för kalkylblad så där går det lite annorlunda till.
Vi låter alla värden representeras avklassmitten i respektive klass. Klassmitten i klassen 8-10 g är 9 g. Det här antagandet kan behöva göras tydligt för eleverna. Vi vet ju egentligen inte mössens individuella vikter, så det här är det bästa vi kan åstadkomma utan djupare analys. Till varje värde (klassmitt) hör antalet möss i den klassen = frekvensen. Alla dessa värden skriver vi in i kalkylbladet.
Vi markerar alla värden i båda kolumnerna och väljer verktyget Envariabelanalys. Klickar vi på summatecknet hittar vi all relevant statistik, som medelvärdet och standardavvikelsen. Det går också att använda kommandona medel(klassmitter, frekvenser) och stdev(klassmitter, frekvenser). Klassmitter och frekvenser skall antingen vara referenser till områden i kalkylbladet som A2:A6, eller GeoGebralistor med klamrar runt sig som {9,11, 13, 15, 17}.
För att rita ut motsvarande histogram krävs en lista med klassgränser. I det här fallet är klassgränserna 8, 10, 12, 14, 16 och 18. Lägg märke till att det finns en mer av gränserna än vad det finns av frekvenser, klasser och klassmitter.
Med gränserna på plats kan du använda kommandot Histogram(klassgränser, frekvenser) vilket ritar ut histogrammet i ritområdet. Det kan vara så att du behöver justera fönsterinställningarna om du har värden på klassgränserna som är högre än ca 10.
Du kan också välja att visa histogrammet direkt i verktyget Envariabelanalys, men då måste du göra manuella inställningar av klassgränserna där. Du hittar de inställningarna om du klickar på kugghjulet.