Etikettarkiv: GeoGebra

GeoGebra för lärare: Att plocka ut värden och skapa hjälplinjer

Du vill illustrera cirkelns ekvation eller hur de trigonometriska funktionerna hänger ihop med enhetscirkeln. Du skapar en cirkel och sätter en punkt på den som du kan dra runt. Så slår det dig att det skulle vara illustrativt att rita ut en triangel i cirkeln så att hypotenusan ligger längs radien. Men hur gör du?

För att visa koordinaterna ändrar du i punktens inställningar

Vi behöver en till punkt på x-axeln, en punkt som alltid har samma x-koordinat som punkten C. Det kan vi skapa genom att skriva
(x(C), 0). funktionen x(C) plockar ut (eller beräknar om du så vill) punkten C:s x-koordinat. På samma sätt kan du få y-koordinaten genom att skriva y(C).

Triangeln kan skapas med polygonverktyget eller med kommandot Polygon()

Med punkten på plats kan du skapa triangeln. Punkt D följer snällt med när du drar i C.

Ett till exempel: Du kan skapa en rektangel genom att skapa en punkt A i origo och punkterna B och C på x-axeln och y-axeln. Genom att plocka ut x-koordinaten för B och y-koordinaten för C så kan du skapa det sista hörnet som punkten D = (x(B), y(C))

Ändra storlek på sidorna genom att dra i B och C.

Lägg märke till att punkter som är helt bestämda (som A och D) är svarta och punkter som du kan dra i (som B och C) är blåa.

Vi kan också använda begreppet plocka ut i några fler situationer. Om du gjort en regression så vill du ibland räkna vidare med de framräknade parametrarna. Hur gör du det om du vill slippa skriva om alla decimaler?

Låt oss ta ett konkret exempel. Om du joggar och vill hålla koll på din kondition och hastighet är det vanligt att arbeta med kilometertider, alltså hur lång tid det tar att springa en kilometer. Låt oss säga att du springer 8 km genom att springa fyra varv på en 2 kilometersslinga. Varje gång du passerar starten noterar du tiderna som blir 8.30, 16.45, 26.15 och 33.45. Vad blir medelhastigheten?

Hastigheten i km/h är 60/kilometertiden

Vi skapar punkter och gör en regression av typen y = kx. Om du är osäker på hur du gör för att slippa konstanttermen så titta på inlägget om regressioner.

I det här diagrammet har vi sträckan i km i minuter på x-axeln och tiden på y-axeln. k-värdets enhet blir alltså minuter/km. För att förvandla den här kilometertiden till hastighet i km/h så får vi ta 60 dividerat med kilometertiden. Alltså behöver vi räkna vidare med lutningen. Hur gör vi det?

Kommandot Koefficienter(f) ger oss en lista med koefficienterna. Kommandot plockar ut koefficienterna från funktionen.

Därefter plockar vi ut första koefficienten genom listanropet l1(1). Vi passar på att ge värdet ett begripligt namn på en gång. Nu kan vi utföra beräkningen. Löparens medelhastighet är ca 14 km/h.

För att summera så kan du plocka ut värden få flera olika sätt:

Plocka ut koefficienterna från en regressionsfunktion: Om f är funktionen som vi bestämt med en regression så blir Koefficienter(f(x)) = {4.263, 0} alltså en lista med koefficienter.

Plocka ut ett element i en lista: Om l1 är listan med värden så blir l1(1) det första elementet i listan, här värdet 4.263. Om l2 är en lista med punkter som vi skapade nyss så blir l2(1) den första punkten i listan.

Plocka ut x- och y-koordinaterna för en punkt: Om A = (2, 8.5) så blir x(A) = 2 och y(A) = 8.5. De fördefinierade funktionerna x(punkt) och y(punkt) plockar ut koordinaterna för en punkt. Väldigt användbart för att lägga till element som punkter och hjälplinjer i figurer.

Tolfte Nordisk-Baltiska GeoGebrakonferensen till Stockholm hösten 2023

I helgen gick den 11:e Nordisk-Baltiska GeoGebrakonferensen av stapeln, denna gång i Helsingfors. Det enklaste sättet att ta del av presentationer och foton är att gå med i Facebookgruppen NGGN Infinity (Nordic GeoGebra Network, ”infinity” är för att vi återanvänder gruppen från år till år). I den gruppen ligger presentationer, och i vissa fall inspelningar av föreläsningar. Missa för allt i världen inte Tim Brzezinskis föreläsning om ”Open middle problems”.

2023 års konferens kommer att arrangeras i Stockholm, så se till att prata med din rektor om fortbildningspengar för detta redan nu. Vi kommer dessutom behöva hjälp med arrangemang och programinnehåll så se till att hålla koll på den här kanalen. Det här passar väldigt bra i tiden med tanke på att GeoGebra kommer att användas som digitalt verktyg i de framtida digitala nationella proven.

Markus Hohenwarter (GeoGebras grundare) och Tanja Wassermair (Chef för webbsidan) kunde också berätta en hel del om kommande nyheter. I GeoGebra Classroom kommer det att bli möjligt att ge feedback till individuella elever till jul men jag var jag personligen mer imponerad av en testsida där Mike Borderch (chefsutvecklare) har gjort en fungerande Python-GeoGebrahybrid där du kan skriva Pythonscript för att generera objekt i Ritområdet. Du kan själv testa detta redan nu. Prova också att leka med koden. För att skapa superellipser kan du byta ut koden mot

for x in range(12):
    s = str(x*0.25)
    evalCommand("x^4+y^4=" + s + "^4")

Berätta gärna vad du tycker och vad du personligen skulle vilja kunna göra med detta.

Avslutningsfotot i Helsingfors

GeoGebra för lärare: Astronomins dag och natt (Sålt på en kafferast)

Lördag 24 september är det Astronomins dag och natt med astronomiaktiviteter över hela landet. Därför vill jag visa en modell av Jorden och Månens rörelse runt Solen, byggd i GeoGebra.

Klicka på animeringen för att gå till konstruktionen

På grund av förändringar i hur konstruktioner presenteras så behöver du själv högerklicka på variabeln/glidaren ”t” i algebrafönstret (området till vänster när du klickat dig fram till konstruktionen på geogebra.org) och välja Animation för att starta ”rörelsen”.

I verkligheten är avstånden sådana att formen på månens bana aldrig blir konkav, men i animeringen blir den mer ”blomlik”.

Konstruktionen (eller ”appleten”) är en del av flera konstruktioner samlade i en GeoGebrabok som heter Sålt på en kafferast som är byggd av Svetlana och Anders. Till varje konstruktion i boken finns också en screencast på hur du själv kan skapa konstruktionen. Det gör den till ett utmärkt verktyg att börja lära sig bygga egna konstruktioner.

GeoGebra i framtida digitala nationella prov

Skolverket har nu börjat konkretisera planerna för de framtida digitala nationella proven i matematik. Det är nu klart att det kommer att finnas GeoGebra, eller ett snarlikt verktyg, tillgängligt för eleverna. Efter samtal med en som faktiskt sett provverktyget tolkar jag det som att det rör sig om en integrerad version av GeoGebra som i allt väsentligt har hela GeoGebras funktionalitet, ungefär som den version som Exam.net använder sig av.

Skolverket har därför vänt sig till Nationellt Centrum för Matematikutbildning, NCM, och givit dem i uppdrag att skapa en lärmodul (av samma slag som finns på lärportalen) för vardera högstadiet och gymnasiet med fokus på GeoGebra. Den modul som redan finns för digitala verktyg kommer att tas bort efter jul. NCM har i sin tur kontaktat Mats Brunström och Maria Fahlgren från Karlstads Universitet och Karlstads GeoGebrainstitut samt mig från Svenska GeoGebrainstitutet för att konstruera den här modulen. Tanken är att den skall vara klar för användning till vårterminen 2023.

Det är bra att Skolverket nu äntligen är tydliga med vad digitala hjälpmedel innebär och väljer det som blivit en internationell standard. GeoGebra används aktivt i så gott som alla världens länder och är översatt till över 50 språk. Möjligen kunde det förtydligandet kommit tidigare så läromedelsföretagen och lärarkåren kunde startat tidigare och därför kommit längre.

För det är ingen liten sak som ska sjösättas. Matematiklärare är den lärargrupp som använder digitala verktyg minst i sin undervisning (tabell 5.27 på sid 83 i Skolverkets rapport från 2015). Men för att Sveriges elever skall ha likvärdiga möjligheter så krävs det att ALLA lärare undervisar ALLA elever om (och med och i) GeoGebra i både högstadiet och gymnasiet inom något år.

Det finns flera aspekter kring detta att diskutera. De rent tekniska färdigheterna ska tränas in. Till detta finns det redan screencasts och dokument i mängder för den som bara tar sig tiden (vilket säkert kommer att resultera i en del facklig indignation och hårda prioriteringar). Sedan har vi den pedagogiska aspekten: Hur använder jag bäst GeoGebra i klassrummet för att lära eleverna matematiska begrepp och procedurer (genom att utnyttja de visuella, dynamiska och undersökande aspekterna av GeoGebra). Tidsaspekten: Hur hinner jag med detta (genom att låta det bli en så naturlig del av din undervisning att både du och dina elever växlar sömlöst mellan att jobba för hand och med verktyget).

GeoGebra är vad jag kallar för ett ”bottenlöst” program. Precis som Excel och Word så kan du använda det – på din egen nivå – i åratal och ändå inte ha lärt dig alla funktioner som finns. Men precis som Excel och Word så kan du ändå använda det ganska bra efter bara lite träning. Efter det kommer resten med tiden och vanan.

Tveka inte att berätta för mig vilken hjälp just du skulle vilja ha för att bättre komma igång med GeoGebra.

System av differentialekvationer i GeoGebra på en elevs dator

GeoGebra för lärare: CAS

Computer Algebra System, CAS hanterar symbolisk algebra men vad kan det göra, egentligen? Och ska inte eleverna lära sig göra det här för hand?

I det här inlägget i serien GeoGebra för lärare så visar jag mina personliga favoriter i CAS. Öppna CAS-fönstret med Ctrl-Shift-K så sätter vi igång.

Fakultetsberäkningar

I CAS är alla beräkningar exakta (om du inte specifikt ber om numeriska svar) och alla siffror skrivs ut korrekt i heltal. Om du beräknar fakulteten för ett tal ≥ 22 så kommer ”vanliga” GeoGebra (algebrafönstret) att ge dig ett avrundat värde medan CAS visar alla siffror korrekt. Prova att slå in 100! i CAS får du se ett ännu tydligare exempel.

Till vänster algebrafönstret, till höger CAS-fönstret

Ekvationslösning

CAS är suveränt för att få exakta lösningar på ekvationer. Oavsett om det är linjära ekvationer vars lösningar lämpligen uttrycks i bråkform eller om det är andragradsekvationer eller rotekvationer så ger CAS de exakta värdena där det är möjligt.

Bara äkta rötter anges i rotekvationer

För att lösa en ekvation kan du antingen använda kommandot Lös(…) eller skriva in ekvationen direkt och trycka på x=-knappen. Vill du ha numeriska lösningar använder du NLös(…) eller x≈.

En av mina absoluta favoriter är att definiera en funktion f och sen skriva Lös(f’ = 0). Det kommandot spar väldigt mycket jobb då du ska hitta extrempunkter. Självklart ska eleverna kunna göra sådant för hand också, men ibland kanske det är hela problemlösningen som ska tränas snarare än algebran. Det gäller ju att göra eleverna bra främst på det som datorerna INTE klarar.

Substituera in värden i formler

I fysiken jobbar du ofta med formler. Substitutionskommandot och substitutionsknappen gör det enkelt att mata in värden på kända variabler och på så sätt få en väldigt enkel ekvation som går lätt att lösa.

Substitutionsdialogen

Här nedan ser vi dessutom exempel på hur vi refererar till tidigare rader med $1, $2 och så vidare. Det går att använda #1, #2… också men då blir referenserna inte dynamiska, det vill säga de uppdateras inte om du ändrar raden de refererar till så jag använder alltid $-tecknet.

Newtons gravitationslag används för att bestämma Jordens massa

Ändra form på uttryck

För polynom finns två huvudsakliga former: Expanderad form (normalform, summaform…) och faktorform. För andragradspolynom finns dessutom vertexform. GeoGebra har kommandon för alla dessa. Jag använder detta framför allt när jag vill visa formerna för eleverna innan de sätter sig att träna på att göra omvandlingar mellan formerna för hand. Här är en film som visar detta.

Vanlig förenkling sker till normalform = expanderad form.

Dynamisk algebra

Skapa en glidare, n, som du ställer in så att den bara antar heltalsvärden genom att sätta dess steglängd till 1 i inställningarna.

Algebraiska uttryck som beror av n ändras då dynamiskt då du ändrar värdet på n. Det här kan till exempel användas för att visa binomialregeln.

Här har vi placerat CAS-fönstret under algebrafönstret där glidaren n är definierad

Här är avslutningsvis lite filmer som visar andra aspekter av CAS:

GeoGebra för lärare: Regressioner

I och med datorernas intåg har nu sedan några år tillbaka begreppet regression med alla dess tillhörande procedurer letat sig in i matematikkurserna. Jag brukar personligen ta upp det redan i Ma1c som ”problemlösningsknep” på uppgifter av typen ”Vilken funktion går genom dessa båda punkter…”. Mer formellt introduceras ”Begreppen regressionsanalys och korrelationskoefficient. Digitala metoder för regressionsanalys” sedan i Ma2, där vi anpassar koefficienterna i en målfunktion med hjälp av minsta kvadratmetoden. I Ma3 och Ma4 utgår författarna till de nationella proven från att eleverna kan anpassa en godtycklig standardfunktion till mätpunkter. På (långt) högre nivå finns det alternativ till minsta kvadratmetoden, men låt oss än så länge hålla oss på gymnasienivå och vad vi kan göra med GeoGebra.

(Minsta kvadratmetoden kan för övrigt visualiseras som om punkterna ”drar” i linjen med hjälp av fjädrar – se den här korta artikeln med sin suggestiva animering.)

Lite nostalgi och teori

Regressionsanalys är alltså en metod för att anpassa en funktion till en mängd datapunkter. Då jag började på universitetet 1982 gjorde vi detta genom att dra en rät linje med penna och linjal längs våra datapunkter som vi noggrant markerat på millimeterrutat papper (ibland med logaritmiska axlar).

Det fanns till och med speciella linjaler för detta ändamål

Jag minns också hur stolt jag var när jag en gång härledde de teoretiska uttrycken för att beräkna parametrarna i en anpassad kvadratisk funktion teoretiskt med hjälp av linjär algebra. Lite senare i kurserna dök det upp datorbaserade metoder i Minitab, ett kolumnbaserat program som skapades 1972 och fortfarande är vid god hälsa.

Från vår verklighet (de empiriska datapunkterna) så skapar vi alltså en matematisk modell (funktionen). Den modell vi får fram är i någon mening ”den bästa” modell vi kan använda av den givna typen.

Den sista anmärkningen om ”i någon mening” är viktig. Det är bättre att använda en funktionstyp som stämmer med den underliggande teorin än att ta en godtycklig funktion som ”stämmer bäst”. Om det finns teoretiska skäl att en linjär funktion borde vara en bra funktion till dina 10 datapunkter så försök inte anpassa ett polynom av 9:e graden. Visst, det går perfekt genom alla dina datapunkter, men har ungefär noll prediktionsvärde eftersom det tenderar att svänga kraftigt och oförutsägbart.

Polynom av hög grad är dåliga på att förutsäga vad som händer utanför dina data

Skapa en lista med punkter

I GeoGebra kan du skapa punkterna på i huvudsak två olika sätt.

Antingen matar du in punkterna en och en, i koordinatform, till exempel som (2.3, 19.2). Därefter använder du verktyget Skapa lista och klickar och drar upp en rektangel runt punkterna vilket skapar listan. Listan heter i de flesta fall l1 (ett gement L följt av en etta).

Eller så matar du in x– och y-koordinaterna i kalkylbladet. Du visar kalkylbladet antingen med kortkommandot Ctrl-Shift-S eller från Visa-menyn. Markera sedan alla numeriska värden (alltså inte eventuella rubriker), högerklicka och välj Skapa… -> Lista med punkter.

I onlineversionen av GeoGebra (= Calculator Suite) finns inget regelrätt kalkylblad, men där finns tabeller istället som fungerar på liknande sätt bortsett från att punkterna visas automatiskt. Du får dock använda Skapa lista för att få listan.

Observera dock att verktyget Skapa lista inte syns i Calculator Suite förrän du klickar på Mer verktyg i botten av verktygslistan. Då finns verktyget under Punktverktygen.

Standardregressioner

GeoGebra har ett stort antal standardregressioner att välja mellan. Linjära funktioner y = kx + m, exponentialfunktioner y = C ax eller y = C ekx, potensfunktioner y = C xa, polynom av olika grad, logistiska, trigonometriska och andra funktioner.

Du kommer åt alla dessa genom att skiva kommandon av typen RegressionLin(l1), RegressionExp(l1) eller RegressionPoly(l1, 3). I det sista exemplet skapas ett tredjegradspolynom. En lista på alla tillgängliga kommandon får du när du börjar skriva Regre….

I Classicversionerna kan du också använda verktyget Tvåvariabels regressionsanalys som ger dig ett eget fönster där du snabbt kan prova olika standardregressioner för att se vilken som passar bäst.

Generella regressioner

Det finns dock situationer där standardfunktionerna inte räcker till. Exempelvis finns det gott om fysiklaborationer där du vill anpassa en rät linje direkt genom origo, alltså en funktion av typen y = kx.

I GeoGebra kan du då göra en regression där du själv anger typen av funktion som ska användas. Du använder då kommandot Regression(…) på något av de två möjliga sätten som beskrivs nedan.

Om funktionen kan delas upp i separata termer där parametrarna som ska anpassas bara är multiplikativa konstanter kan du ange dessa funktioner i en lista:

  • Regression(l1, {x}) ger en funktion av typen y = kx (y = ax)
  • Regression(l1, {1, x2}) ger en funktion av typen y = a + bx2
  • Regression(l1, {2x, x2}) ger en funktion av typen y = a2x + bx2
Att tvinga en rät linje genom origo kan förändra k-värdet en hel del

Om funktionen inte kan delas upp på det sättet, eller om parametrarna inte bara är multiplikativa konstanter så behöver du först definiera din modellfunktion tydligt med hjälp av glidare:

Definiera till exempel funktionen m(x) = c ax + b där a, b och c är oanvända bokstäver. Dessa kommer då att tolkas som glidare. I Classic 5 får du bekräfta detta i en popup-fönster. Du måste inte använda namnet m på funktionen men jag brukar göra det för att påminna mig om att det är min modellfunktion. m(x) ser troligen inte alls ut som något som passar dina datapunkter. Det är för att parametrarnas startvärden är långt ifrån rätt inställda. Vi ignorerar detta för tillfället och om du vill går det bra att dölja m(x). Den är bara till för att GeoGebra ska veta vad vi vill ha i nästa steg. Den här funktionstypen är för övrigt användbar då du undersöker avsvalning mot en rumstemperatur som är skild från noll.

Skriv sedan kommandot Regression(l1, m). Om allt går väl har nu GeoGebra skapat en funktion till dina datapunkter i listan l1 av typen m.

Det kan inträffa (särskilt för mer komplicerade funktioner och trigonometriska funktioner) att algoritmen som jobbar i bakgrunden misslyckas med att hitta en bra funktion. Då får du visa funktionen m(x) igen och ändra glidarna så att modellfunktionen åtminstone påminner om det du är ute efter. Dessa glidarvärden är startvärdena för algoritmen och bra startvärden kan få den att producera ett bättre resultat. För trigonometriska funktioner är parametern som styr frekvensen särskilt känslig.

Koefficienterna

Om du ska räkna vidare med koefficienterna, som ofta är fallet i fysiklaborationer, så kan det vara bra att känna till kommandot Koefficienter(f). Det genererar en lista med de anpassade parametrarna till funktionen f som kan vara antingen en regressionsfunktion, ett polynom eller ett kägelsnitt. Observera att dessa inte är i bokstavsordning i listan. Vill du använda en särskild parameter kan du döpa den genom att skriva t.ex. T0 = l2(1) (det vill säga det första elementet i listan l2).

Felgränser då?

Det skull vara fint att kunna ange felgränser för de beräknade parametrarna. Tyvärr finns inte denna funktion i GeoGebra men jag kommer i ett framtida inlägg beskriva hur du kan göra med hjälp av så kallad jackknife resampling eller genom att använda Python.

Mer om modellering

Tycker du det är kul att lösa problem som handlar om matematiska modeller? Då kanske boken Handbok för matematisk modellering med GeoGebra är något för dig.

GeoGebra för lärare: Grafritning med kontroll

I det här inlägget tittar vi på ett bortglömt kommando som låter dig rita en graf långsamt.

Att rita en graf ”för hand” (troligen använder du ju ändå en räknare, eller hur) låter eleven få se hur grafen växer fram. Det här momentet försvinner ju med moderna digitala hjälpmedel. Eller gör det det?

Åtminstone delar av detta går att simulera. Att skapa en värdetabell går lätt att göra i Classicversionernas kalkylblad eller i Calulator Suiteversionens funktionstabeller. Det går också att använda Classicversionernas funktionsinspektör (se sid 6-7 i det länkade dokumentet).

I funktionsinspektören (Classicversionerna) kan du göra värdetabeller

För själva ritandet finns det till stora delar bortglömda kommandot RitaLångsamt( <funktion> ). Vad kommandot gör är att det kopplar en animerad glidare till funktionen som då ritas ut bit för bit. Du kan styra hastigheten hos glidaren och pausa den när du vill.

I Calculator Suite kan du för funktionen välja Speciella punkter i menyn. Då ritas skärningspunkterna med axlarna samt extrempunkterna ut. I Classicversionerna får du själv skriva in kommandona Extrempunkt(f), Rot(f) eller Rötter(f) samt Skärning(f, yAxeln) för att få fram samma punkter.

Genom att på det här sättet dels visa eleverna hur funktionsdefinitionen leder till värden i tabellen som blir till punkter i grafen som sammanbinds till en funktion behöver ofta upprepas för varje ny funktionstyp som eleverna stöter på. En första introduktion vid räta linjens ekvation följs sen upp med en liknande demonstration då exponentialfunktioner introduceras och sedan i Ma2 för kvadratiska funktioner och i Ma3 polynom av högre grad. Det gör att eleverna bibehåller kopplingen mellan de konkreta numeriska värdena och de mer abstrakta graferna. Det kanske till och med gör att eleverna lättare kommer ihåg de få gånger de faktiskt fått rita grafer för hand.

GeoGebra för lärare: Hjälpresurser

I det tredje inlägget i serien GeoGebra för lärare tittar vi lite på alla de (tämligen omfattande) hjälpresurser som finns att tillgå för att lära sig (mer om) GeoGebra. Låt gärna eleverna ta del av denna information också.

Resurser på svenska

Webbplatsen geogebra.se utgör ett naturligt nav för alla svenska hjälpresurser. Här kan du hitta i princip allt om GeoGebra som finns att hitta på svenska, och hittar du något bra som saknas så meddela mig så lägger jag upp en länk dit så fort jag hinner. Just nu kan du på webbplatsen hitta bland annat:

  • Svensk support finns att tillgå primärt i Facebookgruppen GeoGebrasupport på svenska. Glöm inte att du kan söka efter gamla poster i FB-gruppen också. Det finns till exempel ganska många poster redan med frågor kring hur du löser differentialekvationer av olika slag.

Resurser på Engelska

Det internationella navet för all GeoGebraverksamhet är webbplatsen geogebra.org. Där kan du bland annat

  • Ladda ned de olika apparna
  • Hitta material av olika slag genom att söka direkt på webbsidan.
  • Pointers till olika ingångar till hjälpresurserna, till exempel länkar till Facebook, Twitter, manualer och introduktionsguider finns här och här.
  • För de som vill skapa mer avancerade konstruktioner rekommenderas The GeoGebra Builders Handbook som är en samling med ”kluriga knep” för att göra effektiva konstruktioner.

Och förstås, hittar du inte hjälp någon annanstans kan du alltid höra av dig till mig, Jonas Hall.

Digitala verktyg i undervisningen

Det är veckan efter de nationella proven och i Facebookgruppen Matematikundervisning är det fullt av inlägg om svårighetsgrad, innehåll och tolkningar.

En del inlägg handlar om vad som uppfattas vara ett ökat fokus på användandet av digitala verktyg och låt mig börja med att konstatera att det givetvis har skett en förändring av det centrala innehållet över tid. Olika ämnesområden har försvunnit och andra har lagts till. Under de sista 50 åren har verktyg kommit och gått. Vi använder (väl?) inte räknestickor längre och de första miniräknarna har utvecklats först till funktionsräknare, därefter till grafräknare. Verktygens medium har också förändrats, från analoga verktyg, till dedikerade elektroniska handhållna enheter till internetuppkopplade plattor och datorer med tillgång till kraftfulla matematikverktyg.

Samhället och tekniken förändras och undervisningen med dem. I språkundervisningen har fokus för länge sedan flyttats från korrekt grammatik till effektiv kommunikation, i de samhällsvetenskapliga ämnena ser vi en förskjutning från fakta till processer, perspektiv och källkritik och inom naturvetenskapen har teori och experiment kompletterats med simuleringar och videoanalyser.   

Det har alltid funnits diskussioner kring nya verktygs vara eller icke vara, se till exempel debatten om miniräknarnas vara eller inte vara i slutet av förra seklet. Nu upplever vi bitar av samma diskussion men med siktet inställt på de kraftiga verktyg som gjorts tillgängliga de senaste 10-15 åren, framförallt GeoGebra, Desmos, Octave och Python (det är lite intressant att ingen verkar klaga på Excel som varit tillgängligt mycket längre).

Argumenten mot dessa verktyg verkar i huvudsak falla in under ett fåtal rubriker:

  1. Det tar tid att lära ut dessa verktyg så eleverna (särskilt de svaga) får mindre tid att lära sig det de behöver kunna.
  2. Att lära ut hur verktyg fungerar är inte matematik. Dessutom är det kontraproduktivt, för på högskolan får de inte använda verktyg.
  3. Eleverna kan få godkända resultat på NP bara genom att klicka på knappar (och det är orättvist).

Alla dessa argument lider av ett synsätt som särskiljer kunskaper i matematik från kunskaper om hur man använder matematikverktyg. Jag vill på en gång påpeka att det är ett förståeligt synsätt för de som gått in i yrket med inställningen att de ska lära ut matematik och sedan sett fokuset på digitala verktyg gradvis öka, men – och det här är min huvudsakliga tes – det synsättet behöver upphöra.

Matematikkunskaper och kunskaper om hur du hanterar verktyg för att lösa problem i matematik går hand i hand och undervisningen måste också integrera dessa olika delar till en helhet. Här stöttar jag mig på det som kallas för TPACK-modellen från 2006: Technological, Pedagogical And Content Knowledge. I korthet går modellen ut på att alla dessa tre typer av kunskaper behöver integreras till en helhet för att få en effektiv undervisning.

Technological knowledge, alltså kunskaper om hur du hanterar de matematiska, verktygen behöver integreras både med den pedagogiska kunskapen och det centrala innehållet. Det innebär i praktiken att dels ska verktygen användas av eleverna för att göra det de kan göra: rita grafer, lösa ekvationer, beräkna sannolikheter etc. och dels ska de användas som en integrerad del av din undervisning för att visa på samband, visualisera begrepp och klargöra strukturer m.m.

Och här kommer till en viss kollegial kritik. För jag tror tyvärr att lärarkåren till stor del inte är van vid den här typen av integrering av tekniska kunskaper i undervisningen. Då miniräknarna gjorde sin entré i skolan, hur många var det då som aktivt utnyttjade det nya verktygets pedagogiska möjligheter till att visa decimalutvecklingar, talföljder, samband etc kontra att bara låta eleverna använda miniräknarna?  

Och när de grafräknande räknarna dök upp, hur många lärare skaffade faktiskt OH-plattor eller simulatorer för att demonstrera deras olika funktioner? Hur många gick längre än att visa hur eleverna skulle rita grafer och hitta skärningspunkter? Jag har tyvärr träffat väldigt många elever som vittnar om att de inte fått någon undervisning alls i hur de skulle använda sina räknare effektivt. De tilläts använda dem, men det var allt. Här skulle lärarkåren kunnat göra betydligt mer.

Det ett faktum att Skolverket sedan många år tryckt på användning och undervisning om digitala verktyg. Tyvärr har de inte namngivit dessa och en del lärare har då lutat sig tillbaka och tänkt att ”räknare duger”. Nu, efter vårens nationella prov vecka börjar en del vakna upp men jag har redan hört kollegor som konstaterat att provet för Ma1 inte krävde detta och att de därför inte ser vitsen med att använda annat än räknare där.

Låt mig därför påminna om följande skrivelse från Skolverkets hemsida under matematikämnets syfte:

I undervisningen ska eleverna dessutom ges möjlighet att utveckla sin förmåga att använda digitala verktyg för att lösa problem samt fördjupa sitt matematikkunnande och utvidga de områden där matematikkunnandet kan användas.

Detta gäller alltså oavsett kurs. Om du inte ger dem denna möjlighet begår du alltså tekniskt sett tjänstefel. Anledningen till att det ser olika ut på olika årskurser på NP är att det är olika instanser som konstruerar dem. Umeå Universitet som konstruerar proven för de högre årskurserna har varit tydligare än Primgruppen som konstruerar proven för åk 1.

Nog med kritik. Hur åtgärdar vi problemet med att en del (många?) lärare inte undervisar med och om digitala verktyg? Den här stora gruppen behöver all stöttning den kan få. När det gäller GeoGebra finns en resursmapp med grundläggande instruktioner och länkar för vidare självstudier, en begynnande svensk videolista samt en FB-grupp för support. Du som känner att du är någorlunda bekväm med ett verktyg kan erbjuda support till dina kollegor.  Om du läser detta kan du sprida informationen till dina kollegor som inte ser den.

Skolverket har haft workshops kring programmering. Kanske skulle de också ha workshops kring GeoGebra?

Och till er som tycker det verkar vara övermäktigt: GeoGebra är tillsammans med Word och Excel vad jag kallar för ”bottenlösa” program. De går inte att lära sig till fullo på en vecka eller ens flera år. Du möts av en blank sida utan någon hjälp om hur du går vidare. Men det går att lära sig lite och komma igång. Du måste inte veta hur du radbryter text runt bilder eller gör massutskick för att kunna skriva en läslig text i Word och du behöver inte veta hur du gör Z-tester eller uttrycker kubiska grafer för att kunna lösa ett ekvationssystem i GeoGebra.

Det viktiga är att du börjar. Bara genom att förändras i takt med världen kan vi gå mot framtiden.

Vi ses väl i höst?

I höst går den 11:e Nordisk-Baltiska GeoGebrakonferensen igång i Helsingfors. Under en helg gör vi studiebesök, lyssnar på föredrag och umgås. Kom och träffa aktiva GeoGebraanvändare från Sverige och övriga regionen. Lyssna på Markus Hohenwarter som startade allt. Knyt kontakter.

Kom! Det blir kul!